State-Conditional Adversarial Learning: An Off-Policy Visual Domain Transfer Method for End-to-End Imitation Learning

Dec 1, 2025·
Y. Liu
Shengfan Cao
Shengfan Cao
· 0 min read
Abstract
We study visual domain transfer for end-to-end imitation learning in a realistic and challenging setting where target-domain data are strictly off-policy, expert-free, and scarce. We first provide a theoretical analysis showing that the target-domain imitation loss can be upper bounded by the source-domain loss plus a state-conditional latent KL divergence between source and target observation models. Guided by this result, we propose State- Conditional Adversarial Learning, an off-policy adversarial framework that aligns latent distributions conditioned on system state using a discriminator-based estimator of the conditional KL term. Experiments on visually diverse autonomous driving environments built on the BARC-CARLA simulator demonstrate that SCAL achieves robust transfer and strong sample efficiency.
Type
Publication
IFAC World Congress 2026 (Under Review)
publications
Authors
Shengfan Cao
Authors
PhD Researcher in Autonomous Driving & Robotics
PhD researcher with 3+ years of hands-on experience in autonomous driving and robotic systems, spanning safe learning, control, and end-to-end autonomy deployment. I am transitioning into industry to work where large-scale data and real-world constraints continuously shape and validate learning-based autonomous systems.